

European Code Against Cancer, 5th edition – organised cancer screening programmes

Esther Toes-Zoutendijk¹ , Marc Arbyn², Anssi Auvinen³, David Baldwin⁴, Xavier Castells⁵, Andrea DeCensi⁶ , Solveig Hofvind⁷, Urska Ivanus⁸, Carlo Senore⁹, Mangesh Thorat^{10,11} , Carlijn van der Aalst¹, Ana Carolina Pereira Nunes Pinto^{12,13} , Javier Bracchiglione^{12,13,14,15}, Ariadna Feliu^{16,17} , Hajo Zeeb^{18,19}, Erica D'Souza¹⁶ , David Ritchie¹⁶ , Carolina Espina¹⁶ , Andre L. Carvalho¹⁶ and Iris Lansdorp-Vogelaar¹

1 Public Health, Erasmus MC University Medical Centre, Rotterdam, Netherlands

2 Unit of Cancer Epidemiology, Belgian Cancer Centre, Sciensano, Brussels, Belgium

3 Faculty of Social Sciences, Tampere University and Tampere University Hospital, Finland

4 Nottingham University Hospitals, Respiratory Medicine Unit, David Evans Centre, Nottingham City Hospital Campus, UK

5 Department of Epidemiology and Evaluation, Hospital del Mar Research Institute, Barcelona, Spain

6 EO Ospedali Galliera, Genoa, Italy

7 Department of Breast Cancer Screening, Cancer Registry, Norwegian Institute of Public Health, Oslo, Norway

8 Department of Cervical Cancer Screening, Epidemiology and Cancer Registry, Institute of Oncology Ljubljana, Slovenia

9 Epidemiology and screening unit – CPO, University hospital Città della Salute e della Scienza, Turin, Italy

10 Centre for Cancer Screening, Prevention and Early Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, UK

11 Breast Services, Homerton University Hospital, London, UK

12 Iberoamerican Cochrane Centre, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain

13 Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain

14 Interdisciplinary Centre for Health Studies (CIESAL), Universidad de Valparaíso, Viña del Mar, Chile

15 Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain

16 International Agency for Research on Cancer (IARC/WHO), Lyon, France

17 Department of Primary Care and Public Health, School of Public Health, Imperial College London, UK

18 Leibniz-Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany

19 Health Sciences, University of Bremen, Germany

Keywords

breast cancer; cervical cancer; colorectal cancer; Europe; European Code Against Cancer; lung cancer; organised cancer screening; prostate

Correspondence

E. Toes-Zoutendijk, Department of Public Health, Erasmus MC University Medical Center, P.O. Box 2014, Rotterdam 3000 CA, the Netherlands
Tel: +31107038460
E-mail: e.toes-zoutendijk@erasmusmc.nl

(Received 24 July 2025, revised 31 October 2025, accepted 17 December 2025)

The 5th edition of the European Code Against Cancer (ECAC5) recommends sustainable, organised screening programmes for: (a) colorectal cancer using biennial quantitative faecal immunochemical test (FIT) for individuals aged 50–74 years. As an alternative strategy, once-only endoscopy may be considered within the same age range; (b) breast cancer using biennial digital mammography for women aged 50–69 years. Implementing this strategy for women aged 45–49 years and 70–74 years can be considered. Other screening strategies or additional examinations could be considered for women with high mammographic density; (c) cervical cancer using human papillomavirus (HPV) screening at intervals no shorter than 5 years for women aged 30–65 years. It is recommended to adapt policies according to vaccination status and screening history; and (d) lung cancer using annual low-dose computed tomography (LDCT) for individuals considered to be at increased risk of lung cancer based on age, history of

Abbreviations

CEAs, Cost-effectiveness analyses; CIN3+, Cervical grade III intraepithelial neoplasia; COPD, Chronic obstructive pulmonary disease; ECAC, European Code Against Cancer; ECAC4, European Code Against Cancer, fourth edition; ECAC5, European Code Against Cancer, fifth edition; EU, European Union; FIT, Faecal Immunochemical Test; FS, Flexible sigmoidoscopy; gFOBT, Glucaic-based faecal occult blood testing; HPV, Human papillomavirus; IARC, International Agency for Research on Cancer; LDCT, Low-dose computed tomography; MRI, Magnetic resonance imaging; PSA, Prostate-specific antigen; QALY, Quality adjusted life year; RCT, Randomised controlled trials.

doi:10.1002/1878-0261.70197

smoking or validated risk models, with biennial screening as an alternative. Screening should incorporate smoking cessation interventions.

1. Introduction

Europe accounts for 22% of the worldwide cancer incidence and 20% of cancer mortality, despite having only 10% of the world's population [1]. In Europe, prostate cancer was the most common cancer diagnosed in men in 2022, with an age-standardised incidence rate of 59.9 per 100 000 males, while breast cancer was the most common cancer diagnosed in women (75.6 per 100 000 females). Colorectal cancer was the second most common cancer in both sexes (30.5 per 100 000 persons), followed by lung cancer (28.8 per 100 00 persons). Cervical cancer ranked 10th in women (10.6 per 100 000 females). Together, these five cancers accounted for about 47% of the cancer incidence in Europe. Lung cancer is the most common cause of cancer-related death in Europe, with an age-standardised mortality rate of 21.4 per 100 000 persons, followed by colorectal cancer (12.1 per 100 000 persons). Prostate cancer is third in men (11.2 per 100 000 males), breast cancer is first (14.6 per 100 000 females) and cervical cancer is 10th in women (3.9 per 100 000 females). For both colorectal cancer and lung cancer, the incidence rates are higher in men than in women. Most of the incidence and mortality patterns are characterised by a substantial socio-economic gradient, with generally increasing incidence in low- and middle-income countries and a decreasing incidence in high-income countries. As a result, there are differences in incidence and mortality within Europe. Mortality rates for breast cancer were lower in Northern and Western Europe due to high screening coverage and accessibility to improved treatment. For cervical cancer, a clear east–west gradient is observed; the mortality rate in Eastern Europe of 6.3 per 100 000 females versus 3.9 per 100 000 females in the rest of Europe. Incidence trends typically dropped since the last decades of the previous century up to the earliest years of the current century, which paralleled the spread of mass screening in Western Europe and the Nordic countries [2]. Since then, several European countries with traditionally well-organised cytology-based screening programmes have shown stable or even increasing trends in cervical cancer incidence. In contrast, countries where screening coverage and the quality of cytological examination of Pap smears were poor to moderate at the end of the 1990s have

observed declining incidence rates following the introduction of organised screening in the early 21st century. Differences in incidence rates were also observed for lung cancer, with higher rates in men in Eastern Europe and in women in Northern Europe [1], reflecting the course of the tobacco epidemic [3].

The high burden of cancer in Europe can be reduced by implementing evidence-based screening programmes, alongside other preventive measures such as smoking cessation and vaccination. The Council of the European Union (EU) recommended organised screening for colorectal, breast and cervical cancer in 2003 [4]. Since 2022, the EU also recommends that the feasibility and effectiveness of lung cancer, prostate cancer and screen-and-treat strategies for *Helicobacter pylori* to reduce gastric cancer should be explored [4]. An overview of 28 European countries showed that colorectal, breast and cervical cancer screening programmes have been widely implemented in Europe: 25 countries for colorectal cancer, 23 for breast cancer and 24 for cervical cancer [5]. Moreover, the evidence from randomised controlled trials (RCTs), together with the recommendations of the EU Council, have led to several initiatives to evaluate the feasibility and effectiveness of organised lung and prostate cancer screening programmes in Europe [6]. This fifth edition of the European Code Against Cancer (ECAC5) evaluates the latest evidence on screening for all cancers recommended for screening by the EU Council, to update the ECAC4 cancer screening recommendations (Fig. 1, Annex S1) [7]. This paper presents the updated ECAC5 cancer screening recommendation for the public and the new cancer screening recommendation for policymakers, together with a summary of the supporting evidence. The evidence on gastric cancer screening has been performed by the Working Group on infections [8].

2. Approach

ECAC is an initiative of the European Commission designed to provide clear, evidence-based recommendations for cancer prevention accessible to the public. The current 5th edition has been coordinated by the International Agency for Research on Cancer (IARC)

European Code Against Cancer, 5th edition

14 ways you can help prevent cancer

1 Smoking

Do not smoke. Do not use any form of tobacco, or vaping products. If you smoke, you should quit.

2 Exposure to other people's tobacco smoke

Keep your home and car free of tobacco smoke.

3 Overweight and obesity

Take action to avoid or manage overweight and obesity:

- Limit food high in calories, sugar, fat, and salt.
- Limit drinks high in sugar. Drink mostly water and unsweetened drinks.
- Limit ultra-processed foods.

4 Physical activity

Be physically active in everyday life. Limit the time you spend sitting.

5 Diet

Eat whole grains, vegetables, legumes, and fruits as a major part of your daily diet. Limit red meat, and avoid processed meat.

6 Alcohol

Avoid alcoholic drinks.

7 Breastfeeding

Breastfeed your baby for as long as possible.

8 Sun exposure

Avoid too much sun exposure, especially for children. Use sun protection. Never use sunbeds.

9 Cancer-causing factors at work

Inform yourself about cancer-causing factors at work, and call on your employer to protect you against them. Always follow health and safety instructions at your workplace.

10 Indoor radon gas

Inform yourself about radon gas levels in your area by checking a local radon map. Seek professional help to measure levels in your home and, if necessary, reduce them.

11 Air pollution

Take action to reduce exposure to air pollution by:

- Using public transportation, and walking or cycling instead of using a car
- Choosing low-traffic routes when walking, cycling, or exercising
- Keeping your home free of smoke by not burning materials such as coal or wood
- Supporting policies that improve air quality.

12 Cancer-causing infections

- Vaccinate girls and boys against hepatitis B virus and human papillomavirus (HPV) at the age recommended in your country.
- Take part in testing and treatment for hepatitis B and C viruses, human immunodeficiency virus (HIV), and *Helicobacter pylori*, as recommended in your country.

13 Hormone replacement therapy

If you decide to use hormone replacement therapy (for menopausal symptoms) after a thorough discussion with your health-care professional, limit its use to the shortest duration possible.

14 Organized cancer screening programmes

Take part in organized cancer screening programmes, as recommended in your country, for:

- Bowel cancer
- Breast cancer
- Cervical cancer
- Lung cancer.

Fig. 1. European Code Against Cancer, 5th edition: recommendations for individuals. The 14 recommendations of the European Code Against Cancer, 5th edition (ECAC5) adopted by the Scientific Committee of the ECAC5 project. © 2026 International Agency for Research on Cancer / WHO. Used with permission.

as part of the World Code Against Cancer Framework, launched by IARC in 2022 [9]. The aim of the framework is to support the development of region-specific Codes Against Cancer tailored to distinct epidemiological and socio-economic contexts [9]. A specific methodology has been constructed for use in the development of any Regional Code, including ECAC5, as described in the methodology paper [10]. For the first time, ECAC5 is aimed not only at individuals, but also at policymakers (see Annex S1 for the complete ECAC5 recommendation for individuals and policymakers).

As a general principle, when evaluating the evidence to support a recommendation, the current scientific body of evidence should be classified as ‘sufficient’. This classification should come from authoritative sources, such as the IARC handbooks of cancer prevention, as described by Espina et al. [10]. When no such classification was available for a particular cancer type, a systematic literature review or synthesis of reviews was performed to assess the evidence. To be recommended, the available evidence must demonstrate that screening leads to a reduction in cancer incidence and/or mortality. Furthermore, the evidence should show that the benefits of adopting the recommendation outweigh the potential harms according to the judgement of the Working Group experts. The effectiveness of colorectal, breast and cervical cancer screening was thoroughly reviewed in ECAC4. Since then, no evidence has emerged to substantiate or challenge that conclusion, and we shortly summarise the evidence and relevant updates in the subsequent paragraphs. For lung and prostate cancer screening, the available evidence was not assessed in ECAC4, prompting a formal systematic review for each and thus the evidence is described in more detail. The PICOD criteria for the reviews are presented in Annex S2. The review for lung cancer screening was conducted as a synthesis of systematic reviews.

If evidence of effectiveness of screening for the specific cancer type was deemed sufficient, and the balance between harms and benefits of screening was found to be favourable, the following dimensions were evaluated: equity, feasibility, and individual actionability. Screening for that cancer was then recommended if its impact was deemed to ensure a favourable impact on all these dimensions by the expert Working Group. For the recommended cancer screenings, the corresponding European and World Health Organisation (WHO) guidelines were reviewed, and policy recommendations were derived from these guidelines [10]. For the policy-level recommendation, the recommended test, age range, feasibility and required resources were evaluated.

3. Recommendation for individuals

3.1. Scientific justification for inclusion and update of the recommendation in ECAC5

3.1.1. Evidence on the effectiveness of cancer screening

A comprehensive evaluation of the effectiveness and assessment of benefits and harms associated with screening for each of the cancers is presented below. This evaluation considers the potential benefits—namely incidence and mortality reductions—and the potential harms—namely false-positive results, over-diagnoses and complications—to assess whether the overall balance is favourable.

3.1.1.1. Colorectal cancer screening (bowel cancer screening)

Meta-analysis of RCTs of guaiac-based faecal occult blood testing (gFOBT) showed a 12% reduction in colorectal cancer mortality (Relative Risk (RR) 0.88, 95% CI 0.78–0.90) [11]. Numerous studies have demonstrated that faecal immunochemical testing (FIT) is higher in sensitivity for colorectal cancer than gFOBT. When combined with its ability to achieve higher participation rates, it is considered the preferred screening method over gFOBT [12–16]. Flexible sigmoidoscopy (FS) screening showed a mortality reduction of 25% (HR 0.75, 95% CI 0.67–0.83) and incidence reduction of 24% (HR 0.76, 95% 0.72–0.81) [17]. Since ECAC4, an RCT evaluating the effectiveness of colonoscopy screening has been published, showing no significant reduction in mortality (RR 0.90, 95% CI 0.64–1.16), and a reduction in incidence of 18% (RR 0.82, 95% CI 0.70–0.93) [18]. The per-protocol analyses did show a significant cause-specific mortality reduction of 50% (RR 0.50, 95% CI 0.27–0.77) as well as an incidence reduction of 31% (RR 0.69, 95% CI 0.55–0.83) [18].

A potential harm associated with colorectal cancer screening is the psychological risk following a positive test result and fear of a cancer diagnosis [19,20]. Especially a false-positive result is regarded as a potential harm because of the possible distress associated with a positive FIT result and the potential complications of the unnecessary colonoscopy. A barrier specific for FIT screening is the necessity of handling stool, which can be considered unpleasant and embarrassing [21]. Over-diagnosis is not considered a concern for colorectal cancer screening, as the prevention of cancer through screening may offset the potential increase in detected cancers [22]. While FIT screening is not associated with major complications, individuals who test positive must

undergo colonoscopy, which carries a risk of serious or even fatal complications [23]. Endoscopy screening is more invasive and carries a higher risk of adverse effects, as primary colonoscopy screening requires all eligible individuals to undergo colonoscopy, not just those at higher risk (i.e., positive FIT), thereby exposing more people to potential complications [23,24]. Fatal complications after colonoscopy are relatively rare: 3 to 7 deaths per 100 000 colonoscopies [23,25].

Based on the evidence, it was concluded that the benefits of colorectal cancer screening outweigh the harms.

3.1.1.2. Breast cancer screening

Meta-analyses of RCTs of biennial mammographic screening showed a statistically significant 18–23% reduction in breast cancer mortality [26]. In a systematic review that included observational studies evaluating population-based programmes, the observed mortality reduction was between 20 and 28% in invited women and 31 and 58% in participating women [27]. The benefits were more pronounced for those who attended regularly. In terms of potential harms, mammographic screening might be associated with similar harms as for the other cancer screening programmes, such as fear of cancer diagnosis and false-positive test results [27]. All participants are exposed to low doses of radiation from mammography. This is particularly concerning for individuals with false-positive results, as it may contribute to the development of breast cancer and may result in additional deaths from breast cancer, although this is likely to be extremely low/negligible [28]. Lowering the starting age to 40 would significantly increase the radiation exposure [29]. The most debated issue related to breast cancer is overdiagnosis and overtreatment, largely due to the detection and treatment of slow-growing cancers that would likely not have been diagnosed if the women had not participated in screening. A review of European observational studies from 2012 showed an overdiagnosis proportion of between 1 and 10% [30]. A barrier specific for breast cancer screening is the discomfort or pain associated with undergoing mammography examination, which can affect individuals' willingness to participate [27]. No major complications are associated with mammography screening.

This evidence led to the conclusion that mammographic screening for breast cancer is beneficial and outweighs the harms.

3.1.1.3. Cervical cancer screening

As the practice of microscopic interpretation of Pap smear was widely utilised before RCTs becoming the

standard for generating evidence, no RCTs on the effectiveness of cytology screening have been conducted [31]. A meta-analysis of observational studies showed a 17–79% reduction in cervical cancer mortality for invited vs. noninvited women [32]. The mortality reduction for women who participate in cervical cancer screening compared to those who do not ranges from 41 to 92%. Beyond effects on mortality, cytology screening showed an incidence reduction of 60% [33–36]. Meta-analysis showed that HPV-based screening tests have a relative sensitivity of 1.37 (95% CI 1.20–1.55) for detecting CIN3+ compared to cytology testing [31]. RCTs showed a pooled reduction in CIN3+ detection in the second screening round for women with a negative baseline HPV test (RR 0.43, 95% CI 0.33–0.56) compared to those with a negative cytology test [33]. After 5 years, invasive cervical cancer was reduced by 0.45 (95% CI 0.25–0.81) in the HPV arm compared to the cytology arm [34]. Furthermore, HPV testing using validated PCR-based assays on self-collected specimens is as accurate in detecting CIN3+ as testing on cervical specimens collected by health professionals [37].

There are specific negative consequences associated with cervical cancer screening [31]. The psychological stress associated with a positive HPV test is more pronounced than that associated with an abnormal cytology test, given that HPV is a sexually transmitted disease [38,39]. This may give rise to feelings of stigma and shame [40]. It has been documented that women referred for colposcopy may experience pain or discomfort. Like with colorectal cancer screening, overdiagnosis is not a major concern in cervical cancer screening, as screening also effectively prevents cancer by identifying and treating precancerous lesions. Complications of the surgical treatment of cervical precancerous lesions may increase the risk of preterm delivery and other adverse pregnancy outcomes in subsequent pregnancies [41,42].

Based on this evidence, it was concluded that the harms associated with cervical cancer screening are limited and outweighed by the benefits.

3.1.1.4. Lung cancer screening

The review of the thirteen published systematic reviews was completed as part of the update of the ECAC 5th Edition (Annex S3) [43]. Only three systematic reviews were at low risk of bias and included in the analysis. These reported on the use of low-dose CT screening (LDCT) in high-risk populations, defined by a personal history of current or previous tobacco smoking in addition to specified age ranges and some other risk

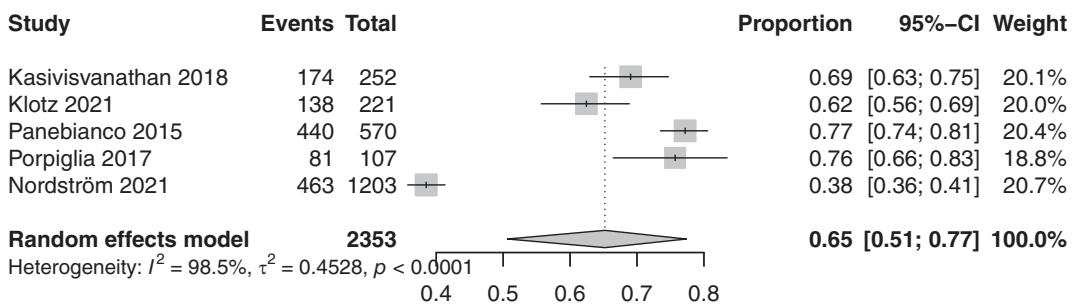
factors. The reviews showed that LDCT screening reduced lung cancer mortality by 21% (RR 0.79, 95% CI 0.72–0.87, 8 trials, 91 122 participants); all-cause mortality was reduced by 5% (RR 0.95, 95% CI 0.91–0.99, 8 trials, 91 107 participants). The overall incidence of lung cancer up to 7 years after the screening was 17% higher than without screening (RR 1.17, 95% CI 1.02–1.33), due to an increase in early-stage lung cancer diagnoses, while incidence of advanced-stage lung cancer was decreased by 25% (RR 0.75, 95% CI 0.68–0.83). Subgroup analyses showed a reduction in lung cancer mortality of 29% (RR 0.71, 95% CI 0.59–0.86) for women and a smaller reduction of 15% (RR 0.85, 95% CI 0.76–0.95) for men.

There is evidence that lung cancer screening is beneficial for high-risk populations, defined by a personal history of current or previous tobacco smoking in addition to specified age ranges and some other risk factors. Those who meet the eligibility criteria should take part in the screening programme, as advised by local authorities.

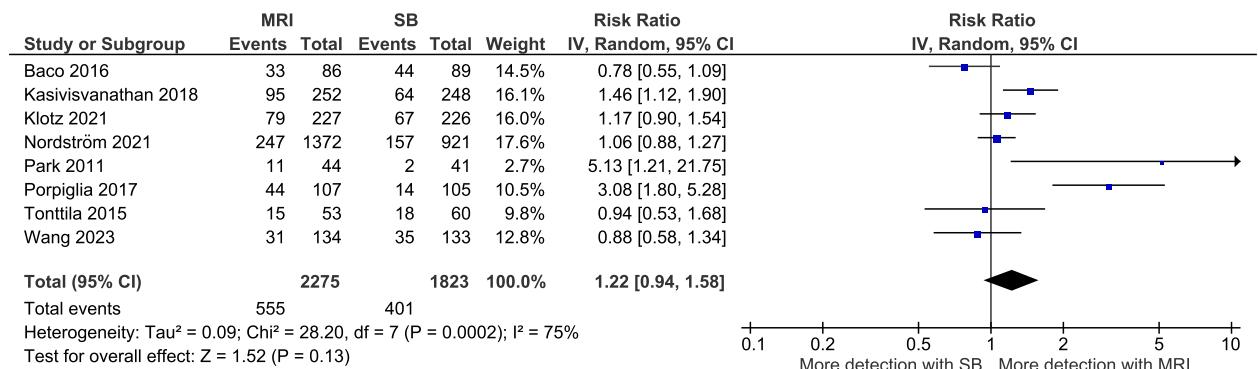
Potential harms of lung cancer screening include both physical and psychological impacts, mostly due to associated worry and anxiety about the test results. Although LDCT uses X-rays, the dose of radiation is very low. After 20 annual screening CT scans, the additional risk of developing cancer would be 0.22% for women and 0.12% for men [44]. LDCT detects lung cancer, pulmonary nodules that may or may not be cancer, mostly only requiring surveillance LDCT to detect interval growth, and incidental findings in the thorax and upper abdomen. There are well-established management paradigms for lung cancer and pulmonary nodules that aim to minimise harm and stress for the participant while ensuring a definitive and timely diagnosis and treatment [45,46]. Incidental findings may require further testing and treatment, which can offer benefits but also pose potential harms, such as identifying conditions that do little harm or that do not have beneficial interventions [47]. A systematic review with meta-analysis on overdiagnosis of LDCT screening was conducted within the ECAC5 project [48]. To summarise, the meta-analysis incorporated the findings of eight RCTs and two cost-effectiveness studies. For the comparison between LDCT versus no screening, a nonsignificant rate of 5% overdiagnoses (RR 1.05, 95% CI 0.88–1.25) was estimated, representing 222 additional cases per 100 000 individuals screened. When using chest X-ray as the comparator, little to no increase in overdiagnoses was observed (RR 1.01, 95% CI 0.95–1.08), representing 63 additional cases per 100 000 people screened [49]. Other

possible harms are related to complications of additional diagnostic investigations of suspicious lung nodules, such as haemothorax or infection.

Based on this evidence, it was concluded that the harms associated with lung cancer screening are outweighed by the benefits.


3.1.1.5. Prostate cancer screening

RCTs performed during the last decade have shown that Prostate-Specific Antigen (PSA) screening can reduce mortality by up to 20% with individual RCTs showing variable reductions, most likely due to contamination from opportunistic screening in the control group [50,51]. The most significant harm of prostate cancer screening is overdiagnosis, which can reach as high as 40%, depending on PSA levels and Gleason scores [52,53]. Prostate cancer screening is associated with biopsy- and treatment-related complications such as sepsis, urinary continence or erectile dysfunction [50].


The harms, especially overdiagnosis, outweigh the mortality reduction. However, harms could be reduced by using Magnetic Resonance Imaging (MRI)A pAs-scanning in men with abnormal PSA levels followed by MRI-targeted biopsies if deemed necessary. The effectiveness of prostate cancer screening using MRI is unknown. A systematic review was conducted and nine RCTs—performed from 2015 to 2021—were selected to be included in the meta-analysis (November 2023) [54]. However, eight of the included studies represented diagnostic accuracy studies and only one concerned a screening trial. Figure 2 shows that biopsy frequency can significantly be reduced using MRI and MRI-targeted biopsy (0.65, 95% CI 0.51–0.77), based on five studies with available data.

Eight studies were included to assess the impact on the detection of clinically significant cancers (Gleason score 7 or higher) (Fig. 3). MRI screening showed an increase in the detection of clinically significant cancers, but the magnitude of the increase was not statistically significant (RR 1.22, 95% CI 0.94–1.58). A sensitivity analysis excluding the study of Baco *et al.* (2016), because of a discrepancy in the outcome definition, marginally changed the initial results (RR 1.32, 95% CI 1.00–1.73). Importantly, the meta-analysis showed that the use of MRI compared to standard care resulted in a significant reduction in the detection of clinically insignificant cancers (Gleason < 7) (RR 0.52, 95% CI 0.35–0.77, data not shown).

Following a comprehensive evaluation of the currently available evidence and taking into account the benefits and possible harms associated with prostate

Fig. 2. Forest plot biopsy frequency using MRI and MRI-targeted biopsy among PSA positive men. Figure 2 presents meta-analysis on biopsy frequency including five studies [55–59]. The square represents the point estimate of the individual study and the horizontal lines represent the 95% CI. The diamond represents the pooled effect estimate from all included studies.

Fig. 3. Forest plot for detection of clinically significant cancers. Figure 3 presents the meta-analysis for clinically significant cancer detection including eight studies [55,57–63]. The square represents the point estimate of the individual study and the horizontal lines the 95% CI. The diamond represents the pooled effect estimate of all included studies. MRI, magnetic resonance imaging; SB, systematic biopsy.

cancer screening, it was decided against including a recommendation on prostate cancer [64]. Using MRI with targeted biopsy may reduce overdiagnosis, as reflected in the meaningful reduction of clinically insignificant prostate cancers while maintaining similar or even higher detection of clinically significant cancers. However, there were concerns related to current available evidence. For example, all but one of the studies were diagnostic accuracy studies, not conducted in a screening setting. Moreover, it is unclear whether the clinically significant cancers with MRI-guided biopsy are the same as those detected with systematic biopsies due to grade shift [64] and the feasibility of MRI triage is limited by MRI capacity. There are currently several ongoing prostate cancer screening trials in Europe that can evaluate the results of multiple screening rounds, and the interval cancer rate [65–67].

Based on the currently available evidence, it is too early to recommend participation in prostate cancer screening. However, it is recommended to await the results of ongoing trials and incorporate them into a future update of the ECAC.

3.2. Presentation of the recommendation

The updated ECAC5 screening recommendation for individuals of the public is:

Take part in organised cancer screening programmes, as recommended in your country, for:

- Bowel cancer
- Breast cancer
- Cervical cancer
- Lung cancer

3.2.1. Colorectal, breast and cervical cancer screening

3.2.1.1. Equity

Participation rates tend to be lower among individuals with lower education levels, lower income, unemployment or immigrant status. This trend is also observed across all organised cancer screening programmes; however, this disparity is less pronounced compared to opportunistic screening [31,68–70]. These findings suggest that while inequities in access to screening persist,

organised programmes can help to reduce these disparities more effectively than opportunistic screening, thus ensuring universal health coverage by providing access to all [71,72].

To promote equity in cancer screening, organised programmes should be implemented [73,74]. Currently, although cancer screening is available in many European countries, not all programmes meet the standards for population-based organised cancer screening. This shortfall hinders equitable access to cancer screening programmes. Barriers such as stigmatising views or cultural beliefs regarding cancer screening or diagnoses should be removed, as should barriers to access, such as providing information in different languages and improving clinic accessibility. This can be achieved, for example, by training the healthcare providers, inviting the entire eligible population and reaching out to hard-to-reach populations.

3.2.1.2. Feasibility

The feasibility for individuals to follow this recommendation is facilitated by offering well-organised cancer screening programmes, which are currently available for colorectal, breast and cervical cancer in most European countries [5]. Feasibility is further enhanced by the availability of home-based self-testing for colorectal cancer and, more recently, also HPV testing, which can be performed using either a self-sample or one collected by a healthcare professional. The availability of self-sampling methods, which may be more comfortable and convenient, can enhance participation for individuals so far not participating in regular screening, especially in remote areas or where there is limited access to healthcare providers [75]. For breast cancer screening, feasibility is associated with the availability of mammography facilities and the geographical location of the screening unit. Accessibility may be facilitated using mobile units. For all cancer screening programmes, it is crucial to ensure that individuals who receive a positive test result have timely access to high-quality further diagnostic procedures and treatment options. The feasibility of these follow-up tests depends on cost coverage. Those lacking resources or health insurance face barriers to access [76]. Taken together, the overall assessment is that participating in these three screening programmes is feasible.

3.2.1.3. Acceptability

The acceptability of cancer screening is related to a variety of factors, which are not cancer-specific but for cancer screening in general, including cultural norms,

levels of trust in the health system, health literacy, the structure of the health system, the economic situation of the country and individual factors such as socio-economic status [68,70,77–80]. As cervical cancer screening includes the detection of sexually transmitted infections and usually requires gynaecological examination, acceptability is affected by the prevailing stigma associated with sexually transmitted infections and feelings of shame [38,75]. Acceptability of cervical cancer screening may be enhanced by the introduction of self-sampling, which is currently being implemented in several European countries, for example the Netherlands or Sweden. There is conflicting evidence on the acceptability of endoscopic screening, as the procedure is invasive and requires bowel preparation. In contrast, FIT screening is widely accepted across Europe, achieving high participation rates that reflect the acceptability of this noninvasive test, which can be performed at home [81]. Breast cancer screening, which has a long history with high uptake rates among eligible women in Europe, reflects the high acceptability of the screening. In conclusion, the acceptability of offered cancer screening tests is high in Europe.

3.2.2. Lung cancer screening

As lung cancer is a new programme to be implemented and has not been described in a previous ECAC, equity, feasibility and acceptability are described separately.

3.2.2.1. Equity

As lung cancer is more prevalent among individuals with a lower socio-economic background, it is anticipated that lung cancer screening will have a proportionally greater impact on these groups [82]. This, in turn, may help to improve equity by reducing inequalities in cancer mortality. LDCT screening has also been shown to have a greater impact on other common smoking-related diseases in individuals from lower socio-economic backgrounds [82]. Participation in screening programmes in general is lower in more deprived groups, prompting interventions to increase participation. In lung cancer screening, this is of particular importance because the incidence of the disease is much higher in these groups [83]. Research has shown that participation rates can be improved through tailored invitation methods [84]. Lung cancer screening may be more effective for women than for men. However, due to historical smoking patterns, more men than women currently qualify for screening.

The gap between men and women is narrowing due to changes in smoking behaviour [85].

3.2.2.2. Feasibility

At present, many countries do not have an organised lung cancer screening programme, so it is not possible for individuals to participate. However, it was decided for the ECAC5 to include a recommendation for LDCT screening to encourage countries to implement organised lung cancer screening. In light of the EU Council Recommendation for a stepwise implementation of lung cancer screening—ensuring gradual and appropriate planning, piloting and programme roll-out—feasibility is anticipated to increase substantially, as several pilot and implementation studies are already underway. LDCT scanning is fast and completely painless. Accessibility may be facilitated using mobile units as a short distance to the screening unit can facilitate screening uptake, especially in those living in more deprived areas and those suffering from comorbidities, resulting in fewer transportation options. Stepwise implementation is needed to ensure sufficient capacity and resources for screening, work-up and treatment [83].

3.2.2.3. Acceptability

LDCT scanning is a suitable and highly acceptable procedure for the target population. The procedure is noninvasive and quick, with a maximum duration of 10 minutes for the screening appointment. Participants do not need to prepare and remain fully clothed. Waiting for the screening results can induce anxiety, like other screening programmes, but the effect is temporary [86]. Furthermore, preventing stigmatising the target population due to the direct relation of lung cancer and smoking can stimulate acceptability among the target population as well as the general public. Thereby, tailored multi-channel communication can support informed decision-making, especially in those with lower health literacy, women and current smokers.

3.2.3. Co-benefits for prevention of noncommunicable diseases other than cancer with similar risk factors and opportunities for health promotion

In addition to the direct benefits of screening, participation may also result in several co-benefits. One such benefit may be the opportunity to also deliver lifestyle interventions, which may vary depending on the specific type of cancer [87,88]. Lifestyle interventions that have been demonstrated to be effective in the

prevention of colorectal cancer include a reduction in the consumption of processed and red meat and alcohol, and an increase in the intake of vegetables and dietary fibre [89,90]. A healthy weight, physical activity and the avoidance of alcohol are also effective lifestyle interventions for the prevention of breast cancer. In addition to the lifestyle interventions, cervical cancer screening provides an opportunity to recommend HPV vaccination to children of attendees [8]. Lung cancer screening can also serve as an effective incentive for smoking cessation, with quit rates of 20–30% and it should therefore be coupled with the offer of smoking cessation advice, as well as quitting smoking interventions. Quitting smoking has been shown to reduce the risk of developing lung and other cancers and other serious conditions, including chronic lung diseases and cardiovascular diseases [91].

4. Recommendation for policymakers

Table 1 presents the European Code Against Cancer, 5th edition recommendations for policymakers on organised cancer screening programmes.

4.1. Presentation of the recommendation for policymakers and key stakeholders

Policy recommendations in ECAC5 are based on the EU Council Recommendation [4,97], European guidelines [26,47,92–95,98] and the three IARC Handbooks on cervical [31,93], breast [26,27] and colorectal cancer [31,99]. We first provide a general recommendation on implementation of cancer screening followed by specific recommendations on test, age range and interval by cancer type.

4.1.1. General recommendations for cancer screening

To reduce the cancer burden and minimise screening-related harms and costs, equitable access to screening and timely, high-quality follow-up care must be ensured. The first policy action is to implement sustainable, well-organised, population-based screening programmes. Sustainability in the context of cancer screening can be defined as actively and effectively translating policies into practice to achieve a meaningful reduction in population-level cancer burden. Sustainability requires consistent investment in coordination and quality assurance—both in screening and related health services—without delaying diagnosis and treatment for symptomatic patients. A well-organised programme can be defined following the criteria for organised cancer screening of Zhang *et al.* [100]. Of the

Table 1. European Code Against Cancer, 5th edition: recommendations for policymakers on organised cancer screening programmes. The table presents the recommendations for policymakers on the implementation of sustainable, organised cancer screening programmes.

Organised cancer screening programmes

Implement sustainable, organised screening programmes for colorectal (bowel), breast and cervical cancer.*

- o For colorectal cancer screening, implement quantitative faecal immunochemical test (FIT) every 2 years for individuals aged 50–74 years. Once-only endoscopy may be considered as an alternative strategy within the same age range.
- o For breast cancer screening, implement digital mammography every 2 years for women** aged 50–69 years, and consider implementing it for women aged 45–49 years and 70–74 years. Other screening tools or additional examinations should be considered for women with high mammographic density.
- o For cervical cancer screening, implement HPV screening at intervals no shorter than 5 years for women** aged 30–65 years. Policies can be adapted according to vaccination status and screening history.

Implement sustainable, organised screening programmes for lung cancer.* Implement low-dose computed tomography every year (preferred) or every 2 years with integrated smoking cessation interventions for individuals identified as being at increased risk of lung cancer based on criteria of either age and history of smoking or locally validated multivariable risk models.

*The recommendations are subject to updates to reflect scientific and technological advances as specified in the European Guidelines for Cancer Screening and Diagnosis: <https://cancer-screening-and-care.jrc.ec.europa.eu>; **Includes people assigned female at birth who are eligible for this screening.

© 2026 International Agency for Research on Cancer / WHO. Used with permission.

References:

- Council recommendation on strengthening prevention through early detection: a new EU approach on cancer screening replacing Council Recommendation 2003/878/EC. Brussels: European Commission; 2022. Available from: <https://eur-lex.europa.eu/legalcontent/> [4].
- European Guidelines for Quality Assurance in Colorectal Cancer Screening and Diagnosis. <https://op.europa.eu/en/publication-detail/-/publication/e1ef52d8-8786-4ac4-9f91-4da2261ee535> [94].
- International Agency for Research on Cancer. Handbook of cancer prevention. Colorectal cancer screening. Vol 17. Lyon: IARC; 2019. <http://publications.iarc.fr/573> [96].
- European guidelines breast cancer screening and diagnosis. <https://cancer-screening-and-care.jrc.ec.europa.eu/en/ecibc/european-breast-cancer-guidelines> [26].
- Karsa L, Dillner J, Suonio E, Tornberg S, Anttila A, Ronco G, et al. European guidelines for quality assurance in cervical cancer screening: second edition: supplements. 2015 <https://doi.org/10.2875/859507> [95].
- WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention, second edition. 2021 Geneva: World Health Organization. <https://www.who.int/publications/item/978924003082> [93].
- Baldwin DR, O'Dowd EL, Tietzova I, Kerpel-Fronius A, Heuvelmans MA, Snoeckx A, et al. Developing a pan-European technical standard for a comprehensive high-quality lung cancer computed tomography screening programme: an ERS technical standard. *Eur Respir J.* 2023;61(6):2300128 [92].

16 essential criteria identified, particular emphasis is placed on the presence of a protocol or guideline outlining the target population, screening intervals, screening tests, referral pathways and management of positive cases. Additionally, a system must be in place to identify eligible individuals, along with a designated organisation or team responsible for implementing and/or coordinating the screening programme. Aligning with these criteria helps ensure that cancer screening is well-organised, which can lead to accessible services for the entire eligible population and promote equitable access in line with the principles of Universal Health Coverage. Promoting equity in screening is essential. Informational materials should be tailored to the entire target population, with a focus on groups less likely to participate, such as migrants and those from lower socio-economic backgrounds [68,70]. Communication should be adjusted to the needs of the individuals; for instance, individuals with lower health literacy are more

responsive to visually engaging messages or decision aids, such as web-based tools, which can help support informed decision-making [68,69,101]. Lastly, cancer screening should be free, to remove the financial barriers, especially for the more deprived populations. Specific policy actions are required for each cancer screening programme as outlined below.

Since cancer screening targets largely healthy populations, ensuring high-quality services across the prevention and care continuum is essential. This requires strong quality assurance through standards, clinical and management guidelines, and digital systems like screening registries. These registries enable personal invitations, individual tracking, and comprehensive monitoring of procedures and outcomes, supporting programme evaluation and safety. Effective programme implementation depends on adequate resources, infrastructure, governance, legal frameworks, IT systems and trained personnel.

4.1.2. Specific recommendations for colorectal cancer

For the policy recommendation on colorectal cancer screening, we used the IARC handbook and the European guidelines on colorectal cancer screening and diagnosis as reference [89, 92]. The RCTs on colorectal cancer screening generally included individuals aged 50–74, all demonstrating that the balance of harms and benefits favours screening. For individuals aged 45–49 years, the balance is less certain due to the lower prevalence of the disease. The rising incidence at younger age was discussed in the ECAC5 Working Group, but it was concluded that there is currently no justification to recommend a lower starting age [102]. Biennial FIT is still the recommended screening interval—supported by strong evidence—but in the future it is expected that screening intervals may be tailored to individual risk. A once-only endoscopy screening is recommended, as existing trials were designed for a single screening and thus provide no evidence of the benefits of repetition [31].

The quantitative FIT allows for adjusting the positivity threshold to minimise false positives. It also enables countries to align with their available colonoscopy capacity. Since FIT-based screening occurs without direct healthcare professional involvement, providing clear and easy-to-follow test instructions is essential.

4.1.3. Specific recommendations for breast cancer

For the policy recommendation on breast cancer screening, we used the IARC handbook and the European guidelines on breast cancer screening and diagnosis as reference [26,27]. The strength of the evidence on the reduction of breast cancer mortality is strong evidence for women aged 50–69 years, demonstrating that the balance of harms and benefits favours screening in this age group [26]. The evidence for women aged 45–49 years and 70–74 years was moderate. Following careful considerations, the consensus was to conditionally recommend screening for women aged 45–49 years and 70–74 years, only if capacity in the country allows. A similar discussion emerged on the optimal screening interval. In the absence of studies directly comparing biennial and triennial intervals, and considering local programme contexts, consensus supported a 2-year interval [26].

Future screening may use risk-based screening intervals. Risk stratification can identify high-risk women—such as those with mammographic dense breasts—and offer them more intensive screening. It is suggested that women with high mammographic breast density

at their first screening could be offered additional digital breast tomosynthesis [26]. The overall certainty of the evidence for this approach is still very low. Other screening tools or additional examinations should be considered for women with high mammographic density [26]. To optimise breast cancer screening, AI algorithms can be used for screen reading, potentially increasing the sensitivity and specificity of the screening test [103–105].

4.1.4. Specific recommendations for cervical cancer

For the policy recommendation on cervical cancer screening, we used the IARC handbook and European guideline as reference [31,95,106]. For cervical cancer screening, HPV screening should be recommended for women aged 30–65 years. Policies can be adapted according to vaccination status and screening history. For younger women, aged 25–29 years, HPV testing may also have some advantages. The decision is a balanced one, considering the high prevalence of HPV at a young age, as well as the occurrence of cytological abnormalities, which are common but transient, and the relatively low incidence of CIN3+ [107]. It is strongly recommended that the screening interval is no shorter than 5 years.

Adequate triage of HPV-positive women should be implemented, considering the underlying risk and HPV type for all age groups, especially in younger, unvaccinated individuals, considering the high prevalence of HPV and the possible obstetrical impact of overtreatment in this age segment [107]. Engaging the target population in cervical cancer screening follows a similar approach to colorectal and breast cancer screening. Providing self-sampling kits has been shown to increase participation rates among nonresponders by offering a more convenient and accessible screening alternative [75].

4.1.5. Specific recommendations for lung cancer

For the policy recommendation on lung cancer screening, we used guidelines from European medical societies [92]. For lung cancer screening, no specific starting age is recommended, as age should be integrated as part of the risk stratification. However, it is not recommended to start screening before the age of 50 or to continue beyond the age of 80. It is recommended that individuals undergo annual screening. In the absence of any abnormality suggestive of a further increased risk of lung cancer, as indicated by the preceding scan, biennial screening may be considered an option, although this is currently an ongoing area of research.

Risk-based lung cancer screening is an important element that defines screening eligibility based on individuals' personal risk. Individuals at highest risk of lung cancer are more likely to maximise benefits of screening, while minimising potential harms caused by screening. The most optimal scenarios include high-risk individuals based on age, a history of tobacco smoking (either current or previous), and other factors, some of which are related to smoking and others not [108]. Eligibility may be defined according to age and history of smoking alone (typically age, pack-years and quit time duration) or by multivariable risk prediction models. Multivariable models include factors such as chronic obstructive pulmonary disease (COPD), a family history of lung cancer, personal history of cancer, body mass index and exposure to asbestos [109]. Thus, a clear protocol is recommended to define eligibility according to risk of developing lung cancer. There is some evidence that multivariable models lead to more efficient selection of participants. The risk threshold can be varied according to cost-effectiveness calculations.

Accurate pulmonary nodule management is essential, preferably considering volume and growth of the solid part of nodules, as it has been demonstrated to be a reliable indicator of the probability of malignancy [110,111]. This approach has led to low referral rates and subsequent test positives, while maintaining lung cancer mortality reductions. Separate cut-offs are needed between existing and newly detected nodules, due to the increased probability of malignancy in the new nodules [111,112]. Lung cancer screening should be accompanied by smoking cessation offers [91,113–115].

4.1.6. Feasibility and resources required

For all cancer screening programmes, infrastructure and resource capacity should be evaluated before implementation and monitored during and after implementation to ensure equal access to care for all individuals, either from the screening pathway or due to symptoms.

4.1.6.1. Colorectal, breast and cervical cancer screening programmes

For colorectal cancer, implementing FIT-based screening is feasible as it is an inexpensive test and requires limited resources for analyses. The primary constraint is the restricted availability of endoscopy resources, which are essential for the timely evaluation of individuals with FIT-positive results. Nevertheless, the FIT positivity threshold can be adjusted to align with the

availability of colonoscopy resources at the local level [116]. Endoscopy can be employed as the primary screening tool to implement strategies that combine the offer of endoscopy and FIT (offering a choice or adopting sequential strategies). As endoscopy capacity is often limited, the feasibility and accessibility of offering endoscopy as a primary screening tool (in particular colonoscopy) may be more challenging [4]. Breast cancer screening using mammography is feasible. It requires sufficient mammography machines and manpower to carry out the screening. Currently, some European countries are struggling to find and train qualified personnel to conduct screening and follow-up examinations. As a result, the population-based breast cancer screening programmes in Europe differ in terms of the target age group, the subsequent assessment and the associated costs [74]. Additionally, adequate resources must be available for subsequent assessment and treatment options [27]. Cervical cancer screening requires resources for sample collection, testing and follow-up. HPV testing is more reliable, easier to interpret and requires less skilled laboratory personnel than cytology, addressing challenges in current programmes. To ensure acceptability, clinicians must provide respectful, culturally sensitive care. In some settings, female healthcare professionals can reduce barriers. Self-sampling kits also empower women to screen in a private setting without clinical involvement [75].

4.1.6.2. Lung cancer screening programme

For lung cancer screening, which is currently only implemented in a few countries across Europe, adequate preparation through carefully designed protocols that include quality assurance is critical, as a phased implementation is needed to ensure a high-quality lung cancer screening programme. Stepwise implementation using evidence-based screening standards and adequate access to diagnostics work-up and treatment are needed to ensure a high-quality lung cancer screening programme [92,117–118]. Implementation programmes/pilots/trials in Europe show that screening for lung cancer with LDCT is feasible. However, the quality of programmes differs across countries/healthcare systems [111,119].

It is important to define the target population based on lung cancer risk and availability of resources. While countries have taken steps to implement this initiative, the lack of necessary resources is a significant barrier to progress [120]. Lung cancer screening must identify individuals with a smoking history, preferably by using patient records or an equivalent electronic database. Integrated smoking cessation should be feasible, as

several studies have shown that smoking cessation rates are much higher within screening programmes [91,115]. A clear protocol for (severe) incidental findings management is crucial to prevent unnecessary diagnosis and treatment procedures [47,92]. Moreover, screening will lead to an increase in lung cancer diagnoses, which require follow-up diagnostics and treatment. Sufficient healthcare resources should be available to handle this workload.

4.1.7. Cost-effectiveness of cancer screening programmes

Cost-effectiveness analyses (CEAs) for colorectal, breast and cervical cancer screening have shown that organised cancer screening is cost-effective [27,31]. For colorectal cancer, FIT screening has been shown to be cost effective and even cost saving, as the removal of polyps and the shift to earlier stage cancers avoids costly treatment of (advanced) cancers, while the cost of the screening test itself is low [96]. Cost per quality-adjusted life-year (cost/QALY) ranged from cost saving to €6000 [121,122]. FS has been shown to be cost saving as a result of the removal of adenomas interrupting their progression toward an invasive colorectal cancer and thus substantially reducing treatment costs. For breast cancer, biennial screening has been shown to be the most cost-effective. Annual screening is effective, but the more intensive screening strategy leads to a large increase in costs and in higher frequency of side effects (unnecessary biopsies), resulting in less cost-effective strategies [27]. Most CEAs showed costs/QALY of biennial mammography compared to no screening ranging between €5000 and €25 000 [123]. The use of artificial intelligence in interpreting screening mammograms has the potential to make breast cancer screening more cost-effective [124]. Cervical cancer screening has shown to be cost-effective, with cost/QALYs ranging between €2000 and €15 000 [125]. HPV testing compared to cytology testing has proven to be more cost-effective, with recent studies suggesting that HPV testing can be cost saving [126]. For lung cancer screening, screening with LDCT is also considered to be cost-effective, with cost/QALY ranging between €9000 and €85 000 [127]. The cost-effectiveness of lung cancer screening is largely driven by the cost of CT screening and the cost of late-stage cancer treatment in each country [128,129]. Integrated smoking cessation can improve the cost effectiveness so that there is net monetary benefit [130,131]. Thus, all four cancer screening programmes are generally regarded as cost-effective. However, the cost per life-year gained varies significantly, driven by factors such as the cost of

primary screening tests, disease prevalence and cancer treatment expenses, among other variables.

5. Conclusions

Based on the available evidence and thorough discussion and consensus among the ECAC5 Working Group of experts, ECAC5 recommends individuals to take part in organised screening programmes for colorectal, breast, cervical and lung cancer, as recommended in their country. Correspondingly, European countries should aim to implement sustainable, organised screening programmes for these cancer types to promote their population in participating in screening. The Working Group decided against recommending prostate cancer screening although PSA screening was considered to be effective. When using systematic biopsy to assess all PSA positive screenees, the benefits of screening do not outweigh the harms. MRI with targeted biopsy significantly reduces the biopsy frequency and it may reduce overdiagnosis and thus harms of screening. However, when the recommendations were developed, there was insufficient evidence to determine whether the benefits of screening would be maintained with this approach.

To ensure that screening is effective and safe, policymakers must implement well-organised programmes that guarantee equal access, sufficient participation rates, and high-quality health services across the entire continuum of cancer prevention and care. A strong focus on quality assurance, including continuous monitoring and evaluation of the programme, is essential to maintain high standards and improve outcomes.

Acknowledgements

We would like to acknowledge and thank Karen Muller (International Agency for Research on Cancer, IARC/WHO) for her editorial review of ECAC5 outputs. Funded by the European Union from the EU4Health programme under Grant Agreement No. 101075240. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency (HaDEA). Neither the European Union nor the granting authority can be held responsible for them.

Conflict of interest

The authors declare no conflict of interest. Where authors are identified as personnel of the International Agency for Research on Cancer/World Health

Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer/World Health Organization.

Author contributions

ET-Z and IL-V were responsible for writing the first version of the manuscript. All authors gave critical revisions on the intellectual content of the manuscript and approved the final manuscript.

Data accessibility

The data that supports the findings of this study are available in Fig. 2 and Fig. 3 and the [Supporting Information](#) of this article.

References

- Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin.* 2024;74(3):229–63.
- Arbyn M, Raifu AO, Weiderpass E, Bray F, Anttila A. Trends of cervical cancer mortality in the member states of the European Union. *Eur J Cancer.* 2025;45:2640–8.
- Globocan 2022 Factsheet Europe. <https://gco.iarc.who.int/media/globocan/factsheets/populations/908-europe-fact-sheet.pdf>
- Council recommendation on strengthening prevention through early detection: a new EU approach on cancer screening replacing Council Recommendation 2003/878/EC. Brussels: European Commission; 2022. <https://eur-lex.europa.eu/legalcontent/>
- Cancer screening factsheets. CanScreen5. <https://canscreen5.iarc.fr/?page=factsheets>
- Lung Cancer Policy Network. <https://www.lungcancerpolicynetwork.com/interactive-map-of-lung-cancer-screening/>. Accessed on December 5 2024
- Espina C, Ritchie D, Riboli E, Kromhout H, Franceschi S, Lansdorp-Vogelaar I, et al. European code against cancer 5th edition – 14 ways you can help prevent cancer. *Lancet Reg Health Eur.* 2026. <https://doi.org/10.1016/j.lanepe.2026.101592>
- Alberts. European code against cancer 5th edition – cancer-causing infections and related interventions. *Mol Oncol.* 2026;20(1):96–116.
- International Agency for Research on Cancer, World Code Against Cancer Framework. <https://cancer-code-world.iarc.who.int/>
- Espina C, Ritchie D, Feliu A, Canelo-Aybar C, D’Souza E, Mitrou PN, et al. Developing evidence-based cancer prevention recommendations: methodology of the world code against cancer framework to create region-specific codes. *Int J Cancer.* 2026;158(1):9–18.
- Hewitson P, Glasziou P, Irwig L, Weller D, Kewenter J. Screening for colorectal cancer using the faecal occult blood test, hemoccult. *Cochrane Database Syst Rev.* 2007;2007(1):CD001216.
- Hol L, Van Leerdam ME, Van Ballegooijen M, van Vuuren AJ, van Dekken H, Reijerink JC, et al. Screening for colorectal cancer: randomised trial comparing guaiac-based and immunochemical faecal occult blood testing and flexible sigmoidoscopy. *Gut.* 2010;59(1):62–8.
- van Rossum LG, van Rijn AF, Laheij RJ, van Oijen MG, Fockens P, van Krieken HH, et al. Random comparison of guaiac and immunochemical fecal occult blood tests for colorectal cancer in a screening population. *Gastroenterology.* 2008;135(1):82–90.
- Allison JE. Immunochemical fecal occult blood tests for colorectal cancer screening. *Am J Med.* 2004;116:498.
- Hassan C, Rossi PG, Camilloni L, Giorgi Rossi P, Rex DK, Jimenez-Cendales B, et al. Meta-analysis: adherence to colorectal cancer screening and the detection rate for advanced neoplasia, according to the type of screening test. *Aliment Pharmacol Ther.* 2012;36(10):929–40.
- Hoffman RM, Steel S, Yee EFT, Massie L, Schrader RM, Murata GH. Colorectal cancer screening adherence is higher with fecal immunochemical tests than guaiac-based fecal occult blood tests: a randomized, controlled trial. *Prev Med.* 2010;50:297–9.
- Wooldrage K, Robbins EC, Duffy SW, Cross AJ. Long-term effects of once-only flexible sigmoidoscopy screening on colorectal cancer incidence and mortality: 21-year follow-up of the UK flexible sigmoidoscopy screening randomised controlled trial. *Lancet Gastroenterol Hepatol.* 2024;9(9):811–24.
- Bretthauer M, Loberg M, Wieszczy P, Kalager M, Emilsson L, Garborg K, et al. Effect of colonoscopy screening on risks of colorectal cancer and related death. *N Engl J Med.* 2022;387(17):1547–56.
- Vermeer NCA, van der Valk MJM, Snijders HS, Vasen HFA, Gerritsen van der Hoop A, Guicherit OR, et al. Psychological distress and quality of life following positive fecal occult blood testing in colorectal cancer screening. *Psychooncology.* 2020;29(6):1084–91.
- Laing SS, Bogart A, Chubak J, Fuller S, Green BB. Psychological distress after a positive fecal occult blood test result among members of an integrated

healthcare delivery system. *Cancer Epidemiol Biomarkers Prev.* 2013;23(1):154–9.

21 Van Dam L, Korfage IJ, Kuipers EJ, Hol L, van Roon AH, Reijerink JC, et al. What influences the decision to participate in colorectal cancer screening with faecal occult blood testing and sigmoidoscopy? *Eur J Cancer.* 2013;49:2321–30.

22 Kalager M, Wieszczy P, Lansdorp-Vogelaar I, Corley DA, Bretthauer M, Kaminski MF. Overdiagnosis in colorectal cancer screening: time to acknowledge a blind spot. *Gastroenterology.* 2018;155:592–5.

23 Kooyker AI, Toes-Zoutendijk E, van Opstal-Winden AWJ, Buskermolen M, van Vuuren HJ, Kuipers EJ, et al. Colonoscopy-related mortality in a fecal immunochemical test-based colorectal cancer screening program. *Clin Gastroenterol Hepatol.* 2021;19(7):1418–25.

24 Vermeer NCA, Snijders HS, Holman FA, Liefers GJ, Bastiaannet E, van de Velde CJ, et al. Colorectal cancer screening: systematic review of screen-related morbidity and mortality. *Cancer Treat Rev.* 2017;54:87–9.

25 Kim SY, Kim HS, Park HJ. Adverse events related to colonoscopy: global trends and future challenges. *World J Gastroenterol.* 2019;25:190–204.

26 European guidelines breast cancer screening and diagnosis. <https://cancer-screening-and-care.jrc.ec.europa.eu/en/ecibc/european-breast-cancer-guidelines>

27 International Agency for Research on Cancer. Handbook of cancer prevention. Breast cancer screening. Vol 15. Lyon: IARC; 2014.

28 Hauge IHR, Pedersen K, Olerud HM, Hole EO, Hofvind S. The risk of radiation-induced breast cancers due to biennial mammographic screening in women aged 50–69 years is minimal. *Acta Radiol.* 2014;55(10):1174–9.

29 Ali RMK, England A, McEntee MF, Mercer CE, Tootell A, Hogg P. Effective lifetime radiation risk for a number of national mammography screening programmes. *Radiography.* 2018;24:240–6.

30 Puliti D, Duffy SW, Miccinesi G, de Koning H, Lynge E, Zappa M, et al. Overdiagnosis in mammographic screening for breast cancer in Europe: a literature review. *J Med Screen.* 2012;19:42–56.

31 International Agency for Research on Cancer. Handbook of cancer prevention. Cervical cancer screening. Vol 18. Lyon: IARC; 2022.

32 Jansen EEL, Zielonke N, Gini A, Anttila A, Segnan N, Vokó Z, et al. Effect of organised cervical cancer screening on cervical cancer mortality in Europe: a systematic review. *Eur J Cancer.* 2019;127:207–23.

33 Arbyn M, Ronco G, Anttila A, Meijer CJLM, Poljak M, Ogilvie G, et al. Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer. *Vaccine.* 2012;30:F88–99.

34 Ronco G, Dillner J, Elfström KM, Tunesi S, Snijders PJ, Arbyn M, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. *Lancet.* 2014;383:532–4.

35 Vaccarella S, Franceschi S, Zaridze D, Poljak M, Veerus P, Plummer M, et al. Preventable fractions of cervical cancer via effective screening in six Baltic, central, and eastern European countries 2017–40: a population-based study. *Lancet Oncol.* 2016;17(10):1445–52.

36 Sasieni P, Castanon A, Cuzick J. Effectiveness of cervical screening with age: population based case-control study of prospectively recorded data. *BMJ.* 2009;339:b2968.

37 Bouvard V, Wentzensen N, Mackie A, Berkhof J, Brotherton J, Giorgi-Rossi P, et al. The IARC perspective on cervical cancer screening. *N Engl J Med.* 2021;385(20):1908–18.

38 O'Connor M, Costello L, Murphy J, Prendiville W, Martin CM, O'Leary JJ, et al. 'I don't care whether it's HPV or ABC, I just want to know if I have cancer.' Factors influencing women's emotional responses to undergoing human papillomavirus testing in routine management in cervical screening: a qualitative study. *BJOG.* 2014;121(11):1421–9.

39 Patel H, Moss EL, Sherman SM. HPV primary cervical screening in England: Women's awareness and attitudes. *Psychooncology.* 2018;27(6):1559–64.

40 McBride E, Marlow LAV, Bennett KF, Stearns S, Waller J. Exploring reasons for variations in anxiety after testing positive for human papillomavirus with normal cytology: a comparative qualitative study. *Psychooncology.* 2021;30(1):84–92.

41 Kyrgiou M, Athanasiou A, Paraskevaidi M, Mitra A, Kalliala I, Martin-Hirsch P, et al. Adverse obstetric outcomes after local treatment for cervical preinvasive and early invasive disease according to cone depth: systematic review and meta-analysis. *BMJ.* 2016;354:i3633.

42 Arbyn M, Kyrgiou M, Simoens C, Raifu AO, Koliopoulos G, Martin-Hirsch P, et al. Perinatal mortality and other severe adverse pregnancy outcomes associated with treatment of cervical intraepithelial neoplasia: meta-analysis. *BMJ.* 2008;337:a1284.

43 Lansdorp-Vogelaar I, Toes-Zoutendijk E, Senore C, Ivanus U, Arbyn M, Auvinen A, et al. Benefits and Harms in Low Dose Computed Tomography Screening for Lung Cancer: an Overview of systematic reviews. PROSPERO 2024. <https://www.crd.york.ac.uk/PROSPERO/view/CRD42023481059>

44 Gierada DS, Black WC, Chiles C, Pinsky PF, Yankelevitz DF. Low-dose ct screening for lung cancer: evidence from 2 decades of study. *Radiol Imaging Cancer.* 2020;2(2):e190058.

45 Baldwin DR, Callister MEJ. The British Thoracic Society guidelines on the investigation and management of pulmonary nodules. *Thorax*. 2015;70(8):794–8.

46 Oudkerk M, Devaraj A, Vliegenthart R, Henzler T, Prosch H, Heussel CP, et al. European position statement on lung cancer screening. *Lancet Oncol*. 2017;18(12):e754–66.

47 O'Dowd ELO, Tietzova I, Bartlett E, O'Dowd EL, Devaraj A, Biederer J, et al. ERS/ESTS/ESTRO/ESR/ESTI/EFOMP statement on management of incidental findings from low dose CT screening for lung cancer. *Eur Respir J*. 2023;62(4):2300533.

48 Fernandez Saenz F, Pereira AC. What is the impact of lung cancer overdiagnosis due to LDCT screening in high risk populations? <https://www.crd.york.ac.uk/PROSPERO/view/CRD42025641923>

49 Fernández-Sáenz FK, de la Torre-Perez L, Baldwin DR, van der Aalst C, Thorat M, Ritchie D, et al. Screening for lung cancer: a systematic review of overdiagnosis and its implications. *Mol Oncol*. 2025. <https://doi.org/10.1002/1878-0261.70139>

50 Ilic D, Djulbegovic M, Jung JH, Hwang EC, Zhou Q, Cleves A, et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis. *BMJ*. 2018;362:k3519.

51 Paschen U, Sturtz S, Fleer D, Lampert U, Skoetz N, Dahm P. Assessment of prostate-specific antigen screening: an evidence-based report by the German Institute for Quality and Efficiency in health care. *BJU Int*. 2022;129(3):280–9.

52 Schröder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. Screening and prostate-cancer mortality in a randomized European study. *N Engl J Med*. 2009;360(13):1320–8.

53 Andriole GL, Crawford ED, Grubb RL, Buys SS, Chia D, Church TR, et al. Mortality results from a randomized prostate-cancer screening trial. *N Engl J Med*. 2009;360(13):1310–9.

54 Brachiglione J, Canelo C, Alonso Coello P. Benefits and harms of using PSA followed by MRI compared with usual care. 2024. PROSPERO 2024. <https://www.crd.york.ac.uk/PROSPERO/view/CRD42024510520>

55 Klotz L, Chin J, Black PC, Finelli A, Anidjar M, Bladou F, et al. Comparison of multiparametric magnetic resonance imaging-targeted biopsy with systematic transrectal ultrasonography biopsy for biopsy-naïve men at risk for prostate cancer: a phase 3 randomized clinical trial. *JAMA Oncol*. 2021;7(4):534–42.

56 Panebianco V, Barchetti F, Sciarra A, Ciardi A, Indino EL, Papalia R, et al. Multiparametric magnetic resonance imaging vs. standard care in men being evaluated for prostate cancer: a randomized study. *Urol Oncol*. 2015;33(1):17.e1–17.e7.

57 Porpiglia F, Manfredi M, Mele F, Cossu M, Bollito E, Veltri A, et al. Diagnostic pathway with multiparametric magnetic resonance imaging versus standard pathway: results from a randomized prospective study in biopsy-naïve patients with suspected prostate cancer. *Eur Urol*. 2017;72(2):282–8.

58 Nordström T, Discacciati A, Bergman M, Clements M, Aly M, Annerstedt M, et al. Prostate cancer screening using a combination of risk-prediction, MRI, and targeted prostate biopsies (STHLM3-MRI): a prospective, population-based, randomised, open-label, non-inferiority trial. *Lancet Oncol*. 2021;22(9):1240–9.

59 Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA, Vaarala MH, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. *N Engl J Med*. 2018;378(19):1767–77.

60 Baco E, Rud E, Eri LM, Moen G, Vlatkovic L, Svindland A, et al. A randomized controlled trial to assess and compare the outcomes of two-core prostate biopsy guided by fused magnetic resonance and transrectal ultrasound images and traditional 12-core systematic biopsy. *Eur Urol*. 2016;69(1):149–56.

61 Park BK, Park JW, Park SY, Kim CK, Lee HM, Jeon SS, et al. Prospective evaluation of 3-T MRI performed before initial transrectal ultrasound-guided prostate biopsy in patients with high prostate-specific antigen and no previous biopsy. *AJR Am J Roentgenol*. 2011;197(5):W876–81.

62 Tonttila PP, Lantto J, Pääkkö E, Piippo U, Kauppila S, Lammentausta E, et al. Prebiopsy multiparametric magnetic resonance imaging for prostate cancer diagnosis in biopsy-naïve men with suspected prostate cancer based on elevated prostate-specific antigen values: results from a randomized prospective blinded controlled trial. *Eur Urol*. 2016;69(3):419–25.

63 Wang X, Xie Y, Zheng X, Liu B, Chen H, Li J, et al. A prospective multi-center randomized comparative trial evaluating outcomes of transrectal ultrasound (TRUS)-guided 12-core systematic biopsy, mpMRI-targeted 12-core biopsy, and artificial intelligence ultrasound of prostate (AIUSP) 6-core targeted biopsy for prostate cancer diagnosis. *World J Urol*. 2023;41(3):653–62.

64 Weinstein IC, Wu X, Hill A, Brennan D, Omil-Lima D, Basourakos S, et al. Impact of magnetic resonance imaging targeting on pathologic upgrading and downgrading at prostatectomy: a systematic review and meta-analysis. *Eur Urol Oncol*. 2023;6(4):355–65.

65 Eklund M, Jäderling F, Discacciati A, Bergman M, Annerstedt M, Aly M, et al. MRI-targeted or standard biopsy in prostate cancer screening. *N Engl J Med*. 2021;385(10):908–20.

66 Auvinen A, Rannikko A, Taari K, Kujala P, Mirtti T, Kenttämies A, et al. A randomized trial of early

detection of clinically significant prostate cancer (ProScreen): study design and rationale. *Eur J Epidemiol.* 2017;32(6):521–7.

67 Hugosson J, Mänsson M, Wallström J, Axcrona U, Carlsson SV, Egevad L, et al. Prostate cancer screening with PSA and MRI followed by targeted biopsy only. *N Engl J Med.* 2022;387:2126–37.

68 Fransen MP, Dekker E, Timmermans DRM, Uiters E, Essink-Bot ML. Accessibility of standardized information of a national colorectal cancer screening program for low health literate screening invitees: a mixed method study. *Patient Educ Couns.* 2017;100(2):327–36.

69 Gabel P, Edwards A, Kirkegaard P, Larsen MB, Andersen B. The LEAD trial—the effectiveness of a decision aid on decision making among citizens with lower educational attainment who have not participated in FIT-based colorectal cancer screening in Denmark: a randomised controlled trial. *Patient Educ Couns.* 2019;103(2):359–68.

70 van de Schootbrugge-Vandermeer HJ, Lansdorp-Vogelaar I, de Jonge L, van Vuuren AJ, Dekker E, Spaander MCW, et al. Socio-demographic and cultural factors related to non-participation in the Dutch colorectal cancer screening programme. *Eur J Cancer.* 2023;190:112942.

71 Carrozza G, Sampaolo L, Bolognesi L, Sardonini L, Bertozi N, Giorgi Rossi P, et al. Cancer screening uptake: association with individual characteristics, geographic distribution, and time trends in Italy. *Epidemiol Prev.* 2015;39:9–18.

72 Levin TR, Corley DA, Jensen CD, Schottinger JE, Quinn VP, Zauber AG, et al. Effects of organized colorectal cancer screening on cancer incidence and mortality in a large community-based population. *Gastroenterology.* 2018;155(5):1383–91.

73 Palència L, Espelt A, Rodríguez-Sanz M, Puigpinós R, Pons-Vigués M, Pasarín MI, et al. Socio-economic inequalities in breast and cervical cancer screening practices in Europe: influence of the type of screening program. *Int J Epidemiol.* 2010;39(3):757–65.

74 Deandrea S, Molina-Barceló A, Uluturk A, Moreno J, Neamtiu L, Peiró-Pérez R, et al. Presence, characteristics and equity of access to breast cancer screening programmes in 27 European countries in 2010 and 2014. Results from an international survey. *Prev Med.* 2016;91:250–63.

75 Arbyn M, Smith SB, Temin S, Sultana F, Castle P. Detecting cervical precancer and reaching underscreened women by using HPV testing on self samples: updated meta-analyses. *BMJ.* 2018;363:k4823.

76 Tavares AI. Voluntary private health insurance and cancer screening utilisation in Europe. *Int J Health Plann Manag.* 2025;40(1):30–56.

77 Bhargava S, Hofvind S, Moen K. Gender, letters, relatives, and god: mediating actors in mammographic screening among Pakistani women in Norway. *Acta Radiol Open.* 2019;8(9):2058460119875015.

78 Alexandraki I, Mooradian AD. Barriers related to mammography use for breast cancer screening among minority women. *J Natl Med Assoc.* 2010;102(3):206–18.

79 Lokdam N, Kristiansen M, Handlos LN, Norredam M. Use of healthcare services in the region of origin among patients with an immigrant background in Denmark: a qualitative study of the motives. *BMC Health Serv Res.* 2016;16:99.

80 Priaulx J, de Koning HJ, de Kok IMCM, Széles G, McKee M. Identifying the barriers to effective breast, cervical and colorectal cancer screening in thirty one European countries using the barriers to effective screening tool (BEST). *Health Policy.* 2018;122:1190–7.

81 Ali O, Gupta S, Brain K, Lifford KJ, Paranjothy S, Dolwani S. Acceptability of alternative technologies compared with faecal immunochemical test and/or colonoscopy in colorectal cancer screening: a systematic review. *J Med Screen.* 2023;30:14–27.

82 Davies MPA, Vulkan D, Gabe R, Duffy SW, Field JK. Impact of single round of low dose CT lung cancer screening on cause of mortality in different socio-economic groups: a post-hoc analysis of long-term follow-up of the UKLS trial. *Lancet Reg Health Eur.* 2024;42:100936.

83 Crosbie PAJ, Gabe R, Simmonds I, Hancock N, Alexandris P, Kennedy M, et al. Participation in community-based lung cancer screening: the Yorkshire lung screening trial. *Eur Respir J.* 2022;60(5):2200483.

84 Quaife SL, Ruparel M, Dickson JL, Beeken RJ, McEwen A, Baldwin DR, et al. Lung screen uptake trial (LSUT): randomized controlled clinical trial testing targeted invitation materials. *Am J Respir Crit Care Med.* 2020;201(8):965–75.

85 Florez N, Kiel L, Riano I, Patel S, DeCarli K, Dhawan N, et al. Lung cancer in women: the past, present, and future. *Clin Lung Cancer.* 2024;25(1):108.

86 Brain K, Lifford KJ, Carter B, Burke O, McDonald F, Devaraj A, et al. Long-term psychosocial outcomes of low-dose CT screening: results of the UK lung cancer screening randomised controlled trial. *Thorax.* 2016;71(11):966–1005.

87 Senore C, Giordano L, Bellisario C, Di Stefano F, Segnan N. Population based cancer screening programmes as a teachable moment for primary prevention interventions. A review of the literature. *Front Oncol.* 2012;2:45.

88 Stevens C, Vrinten C, Smith SG, Waller J, Beeken RJ. Determinants of willingness to receive healthy lifestyle

advice in the context of cancer screening. *Br J Cancer*. 2018;119:251–7.

89 Berstad P, Botteri E, Larsen IK, Løberg M, Kalager M, Holme Ø, et al. Lifestyle changes at middle age and mortality: a population-based prospective cohort study. *J Epidemiol Community Health*. 2016;71(1):59–66.

90 Chapelle N, Martel M, Toes-Zoutendijk E, Barkun AN, Bardou M. Recent advances in clinical practice: colorectal cancer chemoprevention in the average-risk population. *Gut*. 2020;69(12):2225–44.

91 Murray RL, Alexandris P, Baldwin D, Brain K, Britton J, Crosbie PAJ, et al. Uptake and 4-week quit rates from an opt-out co-located smoking cessation service delivered alongside community-based low-dose computed tomography screening within the Yorkshire lung screening trial. *Eur Respir J*. 2024;63(4):2301768.

92 Baldwin DR, O'Dowd EL, Tietzova I, Kerpel-Fronius A, Heuvelmans MA, Snoeckx A, et al. Developing a pan-European technical standard for a comprehensive high-quality lung cancer computed tomography screening programme: an ERS technical standard. *Eur Respir J*. 2023;61(6):2300128.

93 WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention, second edition. 2021 Geneva: World Health Organization. <https://www.who.int/publications/i/item/978924003082>

94 European Guidelines for Quality Assurance in Colorectal Cancer Screening and Diagnosis. <https://op.europa.eu/en/publication-detail/-/publication/e1ef52d8-8786-4ac4-9f91-4da2261ee535>

95 Karsa L, Dillner J, Suonio E, Törnberg S, Anttila A, Ronco G, et al. European guidelines for quality assurance in cervical cancer screening: second edition: supplements. 2015 <https://doi.org/10.2875/859507>

96 International Agency for Research on Cancer. Handbook of cancer prevention. Colorectal cancer screening. Vol 17. Lyon: IARC; 2019. <http://publications.iarc.fr/573>

97 European Commission. Communication from the Commission to the European Parliament and the Council: Europe's Beating Cancer Plan. COM/2021/44 final. 2021 Brussels: European Commission. <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2021:44:FIN>

98 Tackling NCDs: best buys and other recommended interventions for the prevention and control of noncommunicable diseases, second edition. 2024 Geneva: World Health Organization. <https://www.who.int/publications/i/item/9789240091078>

99 European guidelines on colorectal cancer screening and diagnosis. <https://cancer-screening-and-care.jrc.ec.europa.eu/en/ecicc/european-colorectal-cancer-guidelines>

100 Zhang L, Carvalho AL, Mosquera I, Wen T, Lucas E, Sauvaget C, et al. An international consensus on the essential and desirable criteria for an 'organized' cancer screening programme. *BMC Med*. 2022;20(1):101.

101 Smith SK, Trevena L, Simpson JM, Barratt A, Nutbeam D, McCaffery KJ. A decision aid to support informed choices about bowel cancer screening among adults with low education: randomised controlled trial. *BMJ*. 2010;341:c5370.

102 Vuik FE, Nieuwenburg SA, Bardou M, Lansdorp-Vogelaar I, Dinis-Ribeiro M, Bento MJ, et al. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. *Gut*. 2019;68(10):1820–6.

103 Freeman K, Geppert J, Stinton C, Todkill D, Johnson S, Clarke A, et al. Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy. *BMJ*. 2021;374:n1872.

104 Lauritzen AD, Lillholm M, Lynge E, Nielsen M, Karssemeijer N, Vejborg I. Early indicators of the impact of using AI in mammography screening for breast cancer. *Radiology*. 2024;311(3):e232479.

105 Dembrower K, Crippa A, Colón E, Eklund M, Strand F. Artificial intelligence for breast cancer detection in screening mammography in Sweden: a prospective, population-based, paired-reader, non-inferiority study. *Lancet Digit Health*. 2023;5:e703–11.

106 European Guidelines on Cervical Cancer Screening and Diagnosis. <https://cancer-screening-and-care.jrc.ec.europa.eu/en/ec-cvc/european-cervical-cancer-guidelines?topic=32&usertype=336>

107 Woodman CBJ, Collins S, Winter H, Bailey A, Ellis J, Prior P, et al. Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study. *Lancet*. 2001;357(9271):1831–6.

108 Toumazis I, Bastani M, Han SS, Plevritis SK. Risk-based lung cancer screening: a systematic review. *Lung Cancer*. 2020;147:154–86.

109 Tamemägi MC, Katki HA, Hocking WG, Church TR, Caporaso N, Kvale PA, et al. Selection criteria for lung-cancer screening. *N Engl J Med*. 2013;368(8):728–36.

110 Jiang B, Han D, van der Aalst CM, Lancaster HL, Vonder M, Gratama JC, et al. Lung cancer volume doubling time by computed tomography: a systematic review and meta-analysis. *Eur J Cancer*. 2024;212:114339.

111 de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. *N Engl J Med*. 2020;382(6):503–13.

112 Horeweg N, van der Aalst CM, Vliegenthart R, Zhao Y, Xie X, Scholten ET, et al. Volumetric computed tomography screening for lung cancer: three rounds of the NELSON trial. *Eur Respir J.* 2013;42(6):1659–67.

113 Williams PJ, Philip KEJ, Buttery SC, Perkins A, Chan L, Bartlett EC, et al. Immediate smoking cessation support during lung cancer screening: long-term outcomes from two randomised controlled trials. *Thorax.* 2024;79(3):269–73.

114 Walter JE, Heuvelmans MA, de Jong PA, Vliegenthart R, van Ooijen PMA, Peters RB, et al. Occurrence and lung cancer probability of new solid nodules at incidence screening with low-dose CT: analysis of data from the randomised, controlled NELSON trial. *Lancet Oncol.* 2016;17(7):907–16.

115 Buttery SC, Williams P, Mweseli R, Philip KEJ, Sadaka A, Bartlett EC, et al. Immediate smoking cessation support versus usual care in smokers attending a targeted lung health check: the QuLIT trial. *BMJ Open Respir Res.* 2022;9(1):e001030.

116 Toes-Zoutendijk E, van Leerdam ME, Dekker E, van Hees F, Penning C, Nagtegaal I, et al. Real-time monitoring of results during first year of Dutch colorectal cancer screening program and optimization by altering fecal immunochemical test cut-off levels. *Gastroenterology.* 2017;152(4):767–75.

117 Lam S, Bai C, Baldwin DR, Chen Y, Connolly C, de Koning H, et al. Current and future perspectives on computed tomography screening for lung cancer: a roadmap from 2023 to 2027 from the International Association for the Study of Lung Cancer. *J Thorac Oncol.* 2024;19(1):36–51.

118 Lin Y a, Hong Y t, Lin X j, Lin JL, Xiao HM, Huang FF. Barriers and facilitators to uptake of lung cancer screening: a mixed methods systematic review. *Lung Cancer.* 2022;172:9–18.

119 Pinsky PF, Church TR, Izmirlian G, Kramer BS. The National Lung Screening Trial: results stratified by demographics, smoking history, and lung cancer histology. *Cancer.* 2013;119(22):3976–83.

120 Wait S, Alvarez-Rosete A, Osama T, Bancroft D, Cornelissen R, Marušić A, et al. Implementing lung cancer screening in Europe: taking a systems approach. *JTO Clin Res Rep.* 2022;22;3(5):100329.

121 Ran T, Cheng CY, Misselwitz B, Brenner H, Ubel J, Schlander M. Cost-effectiveness of colorectal cancer screening strategies—a systematic review. *Clin Gastroenterol Hepatol.* 2019;17(10):1969–81.

122 van de Schootbrugge-Vandermeer HJ, Toes-Zoutendijk E, de Jonge L, van Leerdam ME, Lansdorp-Vogelaar I. When to start, when to stop with colorectal cancer screening: a cost-effectiveness analysis. *Gastroenterology.* 2024;167(4):801–3.

123 Mühlberger N, Sroczynski G, Gogollari A, Jahn B, Pashayan N, Steyerberg E, et al. Cost effectiveness of breast cancer screening and prevention: a systematic review with a focus on risk-adapted strategies. *Eur J Health Econ.* 2021;22(8):1311–44.

124 Vargas-Palacios A, Sharma N, Sagoo GS. Cost-effectiveness requirements for implementing artificial intelligence technology in the Women's UK breast cancer screening service. *Nat Commun.* 2023;14(1):6110.

125 Sefuthi T, Nkonki L. A systematic review of economic evaluations of cervical cancer screening methods. *Syst Rev.* 2022;11(1):162.

126 Jansen EEL, Naber SK, Aitken CA, de Koning HJ, van Ballegooijen M, de Kok IMCM. Cost-effectiveness of HPV-based cervical screening based on first year results in The Netherlands: a modelling study. *BJOG.* 2021;128(3):573–82.

127 Behr CM, Oude Wolcherink MJ, IJzerman MJ, Vliegenthart R, Koffijberg H. Population-based screening using low-dose chest computed tomography: a systematic review of health economic evaluations. *PharmacoEconomics.* 2023;41(4):395–411.

128 Tomonaga Y, ten Haaf K, Frauenfelder T, Kohler M, Kouyos RD, Shilaih M, et al. Cost-effectiveness of low-dose CT screening for lung cancer in a European country with high prevalence of smoking—a modelling study. *Lung Cancer.* 2018;121:61–9.

129 Griffin E, Hyde C, Long L, Varley-Campbell J, Coelho H, Robinson S, et al. Lung cancer screening by low-dose computed tomography: a cost-effectiveness analysis of alternative programmes in the UK using a newly developed natural history-based economic model. *Diagn Progn Res.* 2020;4(1):20.

130 Cadham CJ, Cao P, Jayasekera J, Taylor KL, Levy DT, Jeon J, et al. Cost-effectiveness of smoking cessation interventions in the lung cancer screening setting: a simulation study. *J Natl Cancer Inst.* 2021;113(8):1065–73.

131 Evans WK, Gauvreau CL, Flanagan WM, Memon S, Yong JHE, Goffin JR, et al. Clinical impact and cost-effectiveness of integrating smoking cessation into lung cancer screening: a microsimulation model. *CMAJ Open.* 2020;8(3):E585–92.

132 Bonney A, Malouf R, Marchal C, Manners D, Fong KM, Marshall HM, et al. Impact of low-dose computed tomography (LDCT) screening on lung cancer-related mortality. *Cochrane Database Syst Rev.* 2022;8(8):CD013829.

133 Jonas DE, Reuland DS, Reddy SM, Nagle M, Clark SD, Weber RP, et al. Screening for lung cancer with low-dose computed tomography: updated evidence report and systematic review for the US preventive services task force. *JAMA.* 2021;325(10):971–87.

134 Passiglia F, Cinquini M, Bertolaccini L, del Re M, Facchinetto F, Ferrara R, et al. Benefits and harms of

lung cancer screening by chest computed tomography: a systematic review and meta-analysis. *J Clin Oncol*. 2021;39(23):2574–85.

135 Agrawal S, Goel AD, Gupta N, Lohiya A. Role of low dose computed tomography on lung cancer detection and mortality—an updated systematic review and meta-analysis. *Monaldi Arch Chest Dis*. 2022;93(1). <https://doi.org/10.4081/monaldi.2022.2284>

136 Chen Y, Zhang Z, Wang H, Sun X, Lin Y, Wu IXY. Comparative effect of different strategies for the screening of lung cancer: a systematic review and network meta-analysis. *J Public Health*. 2022;30:2937–51.

137 Hoffman RM, Atallah RP, Struble RD, Badgett RG. Lung cancer screening with low-dose CT: a meta-analysis. *J Gen Intern Med*. 2020;35(10):3015–25.

138 Huang KL, Wang SY, Lu WC, Chang YH, Su J, Lu YT. Effects of low-dose computed tomography on lung cancer screening: a systematic review, meta-analysis, and trial sequential analysis. *BMC Pulm Med*. 2019;19(1):126.

139 Hunger T, Wanka-Pail E, Brix G, Griebel J. Lung cancer screening with low-dose ct in smokers: a systematic review and meta-analysis. *Diagn*. 2021;11(6):1040.

140 Mazzone PJ, Silvestri GA, Patel S, Caverly TJ, Kanne JP, Katki HA, et al. Screening for lung cancer: CHEST guideline and expert panel report. *Chest*. 2018;153(4):954–85.

141 Mazzone PJ, Silvestri GA, Souter LH, Caverly TJ, Kanne JP, Katki HA, et al. Screening for lung cancer: CHEST guideline and expert panel report. *Chest*. 2021;160(5):e427–94.

142 Snowsill T, Yang H, Griffin E, Long L, Varley-Campbell J, Coelho H, et al. Low-dose computed tomography for lung cancer screening in high-risk populations: a systematic review and economic evaluation. *Health Technol Assess*. 2018;22(69):1–276.

143 Tang X, Qu G, Wang L, Wu W, Sun Y. Low-dose CT screening can reduce cancer mortality: a meta-analysis. *Rev Assoc Med Bras*. 2019;65:1508–14.

144 Yang H, Varley-Campbell J, Coelho H, Long L, Robinson S, Snowsill T, et al. Do we know enough about the effect of low-dose computed tomography screening for lung cancer on survival to act? A systematic review, meta-analysis and network meta-analysis of randomised controlled trials. *Diagn Progn Res*. 2019;3(1):23.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Annex S1. European Code Against Cancer, 5th edition. © 2026 International Agency for Research on Cancer / WHO. Used with permission.

Annex S2. Overview of PICOD questions for meta-analysis on lung and prostate cancer screening.

Annex S3. Characteristics of reviews included in the review on lung cancer screening.